Optic Nerve Hypoplasia (ONH) & the Endocrine System

By
Kathy Gadomski MSN, RN, CNP
March 23, 2012
Objectives

- Describe basic anatomy and physiology of the endocrine system
- Describe basic anatomy and physiology of the optic nerve
- Describe role of hormones in regulation of body function
- Discuss relationship between ONH and hypopituitarism
- Discuss management of hormone deficiencies
Pituitary Gland/Hypothalamus/ON
Midline Structures
Optic Nerve(s)/Chiasm

- The optic nerve is a bundle of nerve fibers that serves as the communication cable between your eyes and your brain.
- Optic nerves intersect at the optic chiasm.
Optic Nerve/Chiasm & Pituitary Gland
Pituitary Gland & Hypothalamus

- **Pituitary gland** (Hypophysis)
 - Anterior pituitary (adenohypophysis)
 - Posterior pituitary (neurohypophysis)

- **Pituitary stalk**
 - Conduit between hypothalamus and pituitary gland
Hypothalamus

- Controls function of pituitary gland
- Controls blood pressure, hunger, thirst, fluid/electrolyte balance, emotions, body temperature regulation, and circadian rhythms (sleep-wake cycles)
Pituitary Gland → “Master Gland”
Hypothalamic-Pituitary-Hormone Axis

- Most hormones axes interact to maintain equilibrium
 - Ex: Cortisol necessary for ADH action
- Hormone control via negative feedback loops
Optic Nerve Hypoplasia

Congenital abnormality → Small optic discs
- Unilateral or bilateral
- Isolated or in combo with myriad of functional and anatomic abnormalities of the central nervous system
- Varying degrees of visual impairment

Incidence
- Prevalence unknown in USA
- Prior to 1970, considered a rare condition
- Incidence increasing
Hypopituitarism

- Absence or reduction in the function of one or more hormones produced by the pituitary gland and hypothalamus
- “Pan” indicates more than one hormone deficiency
- Incidence:
 - Pan-hypopituitarism → <3 : 1 million/year
 - Growth Hormone Deficiency → 1 : 3480 children
Causes of Hypopituitarism

Congenital
- **Birth trauma and/or asphyxia**
 - H/O transected or interrupted hypophyseal stalk
- **Midline Defect Syndromes**
 - Septoptic Dysplasia (de Morsier syndrome)
 - Absent septum pellucidum or absent corpus callosum
 - Cleft lip/palate, encephaloceles
- **Genetic mutations**
 - Transcription factors regulating anatomic development of pituitary gland
- **Idiopathic**
 - Unassociated w/clinical, biochemical, or radiologic abnormalities
Causes of Hypopituitarism

Acquired
- Brain tumors (Craniopharyngioma, most common)
- Cranial irradiation
 - S/P radiation-induced damage to hypothalamus. Pituitary gland relatively resistant to radiation
- Trauma: Especially with prolonged loss of consciousness
- Infiltrative, autoimmune, and metabolic diseases
 - Histiocytosis, sarkoidosis, hemochromatosis, cerebral edema
- Other
 - Brain infections, hydrocephalus, vascular abnormalities of H-P region
Clinical presentation of Hypopituitarism

Neonate
- Hypoglycemia
- Prolonged hyperbilirubinemia
- Turbulent neonatal course
- Micropenis

Older child
- Growth failure
- Diabetes insipidus
- Disorders of pubertal development
- Visual and neurologic complaints
- Characteristic facies and body habitus
Diagnosis of Hypopituitarism

Labs:
- TSH, FT4,
- IGF-1, IGF-BP3,
- AM fasting cortisol
- LH, FSH
- Stimulation testing

MRI:
- Abnl pituitary gland
 - 50% severe GHD
 - 94% MPHD
 - 0% partial GHD
- Hypothalamic dysfunction → not detectable on imaging
Septo Optic Dysplasia

Septo Optic Dysplasia
At least 2 findings:
- Optic Nerve Hypoplasia
- Absent septum pellucidum
- Hypopituitarism
Hypopituitarism & ONH

Hypopituitarism
- 75% to 80% of ONH
- GHD (70%)
- Hypothyroidism (43%)
- Adrenal insufficiency (27%)
- Diabetes insipidus (5%)
- Asymptomatic hyperprolactinemia (62%)
- Puberty may be delayed or precocious

MRI with OHN
- 13% abnl pituitary gland
- 38% absent septum pellucidum
Growth Hormone (GH)

- Causes cell growth and division
- Promotes strong bones
- Helps regulate the body’s metabolism by burning fat, building muscle, and maintaining blood sugar levels
H-P-GH Axis

- **Hypothalamus** → GHRH (growth hormone releasing hormone) → Stimulates both synthesis and secretion of growth hormone

 ↓

- **Pituitary gland** → stores GH

 ↓

- **IGF-1** → stimulates cell growth
Growth Hormone Deficiency (GHD)

Symptoms
- Neonates: hypoglycemia, micropenis
- Slow growth velocity → short stature
- Reduction of lean body mass/excess of fat
- Delayed bone age

Diagnosis
- IGF-1, IGF-BP3
- GH stimulation test

Treatment
- GH replacement → Daily SC injections
Cortisol ("Stress Hormone")

- Maintains body energy supply
- Controls the body's reaction to physical stress
- Maintains blood pressure
- Maintains normal blood sugar levels
- Supports immune system
- Severe deficiency → life-threatening w/severe illness or trauma
H-P-A Axis

- Hypothalamus \rightarrow CRH (Corticotropin-releasing hormone)
- Pituitary Gland \rightarrow ACTH (Adrenocorticotropic hormone)
- Adrenal Gland \rightarrow Cortisol
Central Adrenal Insufficiency

Cause
- ↓ACTH production

Symptoms
- Neonatal choleostasis, jaundice, hypoglycemia
- Increased fatigue and irritability
- Increased duration of illness

Diagnosis
- AM fasting cortisol
- Low dose ACTH stim test

Treatment:
Cortisol replacement
- Hydrocortisone (short half-life)
- Prednisone (long half-life)
- Stress dosing: double/triple oral dose
- Injectable steroids
Thyroid Hormone

Thyroid hormone regulates:

- Metabolism
- Temperature
- Heart rate
- Muscle/bone strength
- Growth: Stimulates growth hormone release and effectiveness
- Intelligence
 - Essential for normal brain growth fetal to 3 yrs. of age
 - Controls synapse movement, neuron formation, growth of myelin and telling neurons where they belong once formed in the brain.
H-P-T Axis

- Hypothalamus → TRH (Thyrotropin-releasing hormone)
- Pituitary gland → TSH (Thyroid stimulating hormone)
- Thyroid gland → thyroxine
Central Hypothyroidism

Cause

\[\downarrow \text{TSH} \rightarrow \text{decreased thyroid hormone production} \]

Symptoms
- Fatigue
- Dry, itchy skin
- Short stature

Delayed bone age

Diagnosis

- TSH, FT4

Treatment

Thyroid hormone replacement

- Levothyroxine tabs
Anti-diuretic Hormone (ADH) (Vasopressin)

- **Hypothalamus** → ADH (anti-diuretic hormone)
 - ↓
- **Pituitary** → stores ADH
 - ↓
- **Kidneys** → conserve water
Diabetes Insipidus (DI)

Diabainein: Greek, "to pass through"
Insipidus: Latin, "having no flavor"

- Deficiency of ADH = Central DI
- End organ insensitivity to ADH = Nephrogenic DI
 → results in inability of the kidneys to conserve water
 → leads to frequent urination and pronounced thirst
Diabetes Insipidus

Symptoms: varies with age
- Infants:
 - FTT
 - Irritability
 - Polyuria
- Older children:
 - Polyuria
 - Polydipsia
- Concomitant anterior pituitary hormones deficiencies may mask DI

Diagnosis
- Fasting electrolytes
- Water deprivation test

Treatment
- DDAVP (vasopressin analog)
- Desmopressin (generic)
- SQ, intranasal, tabs
- Dosing goal: uninterrupted activities of daily living (ADL)
Gonadotropin

- **LH** (luteinizing hormone)
 - stimulates secretion of sex steroids from the gonads
- **FSH** (follicular stimulating hormone)
 - stimulates the maturation of ovarian follicles
 - critical for sperm production

Estrogen and Testosterone

- Necessary for initiation of puberty and maintaining adult body habitus
- Help maintain:
 - Bones
 - Cardiac health
 - Energy levels
 - Menstrual cycles
 - Fertility
H-P-G Axis

- **Hypothalamus** → GnRH (gonadotropin releasing hormone)
 - ↓
 - **Pituitary gland** → LH / FSH
 - ↓
 - **Ovaries** → estrogen
 - ↓
 - **Testes** → testosterone
Central Gonadotropin Deficiency

Cause
- ↓LH & FSH → decreased or no production of estrogen or testosterone

Symptoms
- Lack of secondary sexual development

Diagnosis
- LH, FSH
- LHRH stimulation test

Treatment
- Estrogen/progesterone replacement
 - Oral or patch
- Testosterone replacement
 - Depot injection, patch, or gel
Questions?

